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Abstract

The analysis of coherent structures is a common problem in many scientific domains ranging from
astrophysics to combustion, fusion, and materials science. The data from three-dimensional simulations
are analyzed to detect the structures, extract statistics on them, and track them over time to gain insights
into the phenomenon being modeled. This analysis is typically done off-line, using data that have been
written out by the simulations. However, the move towards extreme scale architectures, with multi-core
processors and graphical processing units, will affect how such analysis is done as it is unlikely that the
systems will support the I/O bandwidth required for off-line analysis. Moving the analysis in-situ is a
solution only if we know a priori what analysis will be done, as well as the algorithms used and their
parameter settings. Even then, we need to ensure that this will not substantially increase the memory
requirements or the data movement as the former will be limited and the latter will be expensive. In the
Exa-DM project, a collaboration between Lawrence Livermore National Laboratory and University of
Minnesota, we are exploring ways in which we can address the conflicting demands of coherent structure
analysis of simulation data and the architecture of modern parallel systems, while enabling scientific
discovery at the exascale. In this paper, we describe our work in two areas: the in situ implementation of
an existing algorithm for coherent structure analysis and the use of graph-based techniques to efficiently
compress the data.
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1 Introduction

The detection and analysis of coherent structures is a problem that occurs in many domains. In fusion,
coherent structures in both simulation and experimental data are analyzed to understand the effects of
turbulence that could result in the loss of confinement of the plasma [11, 8] In combustion, the behavior of
these structures provides insights into the process of ignition, extinction, and re-ignition. In materials science,
such analysis can be used to understand properties of metals through simulations that model the formation
of macroscopic grains that grow out of a liquid and form structures when the liquid is subject to high
temperature and pressure [14]. Coherent structure analysis also plays a role in understanding instabilities
in the mixing of fluids, such as the analysis of bubble and spike structures in Rayleigh-Taylor instability [6]
or the validation of the Richtmyer-Meshkov instability [7].

A typical scenario in the analysis of coherent structures involves the writing out of the data from sim-
ulations or experiments, followed by the application of various analysis algorithms off-line. The concept
of a coherent structure is often an intuitive one, where a group of grid points (or pixels in an image) is
considered to be a structure if the points are spatially close and behave in a similar manner. As the analysis
of these coherent structures is usually motivated by scientific discovery and the need to to gain insights into
the phenomenon being simulated (for example, does the distribution of the size of the structures follow a
power law?), it precludes a quantitative definition that could be used to extract the structures from data.
Consequently, we need to experiment to identify algorithms that are most appropriate for a given dataset,
and use different algorithms to gain confidence in the results. Further, as these structures evolve with time,
and may merge, split, appear, or disappear, it can be difficult to select the parameters for the algorithms
used in the analysis.

Addressing all these issues is a challenge, especially when the datasets are very large, being measured in
tens of terabytes or more. Exacerbating matters further is the recent move towards extreme-scale computing
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using multi-core processors and graphical processing units. On one hand, this provides the compute power
to make these massive-scale simulations feasible, while on the other hand, the new architectures will have
severely limited I/O bandwidth, thus affecting the amount of data that can be written out. In addition, the
high cost of data movement within a processor, and the limited memory, also pose challenges as we seek to
enable scientific discovery in simulations at the extreme scale.

The Exa-DM project, a collaboration between Lawrence Livermore National Laboratory and the Univer-
sity of Minnestoa, seeks to address these challenges in different ways. In this paper, we focus on two solution
approaches - the first considers ways in which an existing technique for detection of coherent structures is
being modified to perform the analysis in-situ and the second explores the use of clustering techniques from
data mining to intelligently reduce the size of the data being output.

2 Coherent structures in simulation data

In a problem involving coherent structure analysis of simulation output, the data consist of the values
of different variables at grid points in the problem domain. The underlying grid can be structured or
unstructured and the number of variables depends on the problem. Sometimes, the domain scientists might
output only those variables which are of immediate interest. If the initial analysis indicates that other
variables must be analyzed, then the simulation is re-run to write out additional data.

Figure 1 is a small subset of the data output from a plasma physics simulation that was run as part of
the GSEP Fusion SciDAC Center [10, 3]. This center is developing the predictive capability for assessing the
effects of energetic particles on the performance of the burning plasmas in ITER [4]. The figure shows two
variables, electrostatic potential and ion heat flux, on a single poloidal plane. The full dataset is in three
dimensions, with 32 poloidal planes spaced equidistant on a toroid. The dataset shown is relatively small,
with 40000 grid points in a poloidal plane and five variables at each grid point. The analysis is done on
more moderate-sized datasets, with 64 poloidal planes, each with 600,000 grid points and 10 variables per
grid point, run over 8000 time steps. The different datasets are the result of modeling using different physics,
with the coherent structure analysis being used to provide insights into the different approaches.

Figure 1: The electrostatic potential (top) and the ion heat flux (bottom) variables at time steps 1500 (left), 2500
(middle), and 3500 (right) in a plasma physics simulation. Points with similar colors have similar values, but the
colors themselves do not have any significance.
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The images were generated using a tool that assigns a color to each grid point based on the value of
the variable. Points with similar colors have similar values, but the colors themselves do not have any
significance. Note that the structures in both the variables are well formed at time step 1500, but degenerate
as time progresses. Figure 2 shows a zoomed-in of the two variables, clearly showing the grid points. The
goal of the analysis is to understand turbulence in plasma by identifying the structures, extracting statistics
on them, and tracking them over time.

Figure 2: A zoomed-in view of the electrostatic potential (left) and the ion heat flux (right) variables at time steps
1500. Note that the ion heat flux is noisier than the electrostatic potential as indicated by the different colored points
that form the interior of each structure.

3 Extending a threshold-based algorithm to extreme-scale

In earlier work [8], we used a simple threshold-based algorithm to separate the coherent structures in the
ion heat flux (the variable of interest) from the background. This solution was motivated by the fact that
we could exploit the values of the ion heat flux on a flux surface (the set of grid points at a fixed radius
from the center of the poloidal plane), as shown in Figure 3, to calculate a threshold that would disconnect
the structures from each other. At later time steps, when the ion heat flux is noisier, we can exploit the
better-behaved electrostatic potential to obtain the threshold.

Figure 3: The electrostatic potential (red) and ion heat flux (blue) values on a flux surface at time steps 1500 (left)
and 2500 (right). Observe in the left figure that a threshold selected at the valleys of the ion heat flux will disconnect
neighboring structures in this variable.
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A serial algorithm for finding the structures in this dataset can be summarized as follows:

• Step 1: Determine a threshold for a poloidal plane by considering the values of the ion heat flux and
the electrostatic potential at a few flux surfaces and taking the average of the thresholds obtained for
each flux surface. Next, obtain the global threshold for a time step by averaging the values of the
thresholds for each poloidal plane.

• Step 2: Apply the threshold to disconnect the structures from each other. A simple approach that
drops all grid points whose value is below the threshold can result in structures which are connected to
each other at a single point, resulting in artificially large structures. To avoid this, we use additional
constraints, such as “a grid point is retained as part of a structure, if it, and n of its m neighbors have
values higher than the threshold.” Such constraints address points at the boundary of a structure and
disconnect structures that would have been connected if a simple thresholding had been used.

• Step 3: Use a connected component analysis [1] based on a union-find data structure to associate a
unique identifier with all grid points corresponding to a coherent structure.

Once we have identified the grid points that form a structure (see Figure 4), we can extract statistics
such as the sizes of the structures, the distribution of the sizes, the distribution of the integrated ion heat
flux in the structures, and so on.

Figure 4: The coherent structures identified in the ion heat flux variable at time steps 1500 (left), 2500 (middle),
and 3500 (right). Points within a structure are assigned the same color.

For the parallel, in situ implementation, we assume a general case, where each processor has grid points
that correspond to parts of several flux surfaces. The calculation of the threshold (Step 1) is relatively simple
as it requires minimal additional memory and communication. The more challenging aspects of parallelizing
this algorithm, without increasing the memory requirements or communication costs substantially, lie in the
application of the threshold (Step 2) and the connected component analysis for the identification of the grid
points corresponding to each structure (Step 3). We next discuss our work on the first of these problems.

The application of the threshold requires the identification of the neighbors of each grid point. Since
the grid is fixed for all time steps, the current aproach calculates the neighbors of each grid point on each
poloidal plane, once, offline, and writes out the information to a file. The neighbors of a point are defined
as grid points within a certain fixed radius of the point. This file is read in for each poloidal plane at each
time step for use in the coherent structure analysis, an approach which will be infeasible in extreme scale.

We are exploring several options for calculating the nearest neighbors, an operation which occurs in many
algorithms which are used for coherent structure detection as these structures are identified based on the
similarity of neighboring points. We consider three options (i) a brute force search, where no additional
memory is required; (ii) a simple uniform grid [2] that has low memory requirements and has shown to be
scalable to large number of points in two- and three-dimensions; and (iii) a more complex data structure,
such as the KD tree [1], which is re-created at each time step to speed up the search while avoiding a
permanent increase in the memory by keeping the structure across time steps.
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Figure 5 shows that the time it takes to conduct a nearest neighbor search varies for these three methods.
As expected, the uniform grid works well at low dimensions (< 5), but its performance rapidly worsens with
increasing dimension. A similar behavior is seen with the KD-tree data structure, though it performs well
for dimension less than 18, and is better than a brute force search until dimension 25. However, there is a
trade-off between the time required for search and the time it requires to build the data structure, as well as
the additional memory required to store the data structure. Since we need to perform the nearest neighbor
search in two dimensions, we expect that the uniform grid will perform better than the KD tree. We also
expect that, given a dataset, each method will have its advantages and disadvantages, and the optimal choice
of a data structure (if any) will depend on the relative “cost” of the additional memory required, the data
movement involved in the brute force search, and the size of the data on each processor. As we implement
our algorithms in parallel, we continue to explore these alternatives, as well as approaches that can exploit
any additional information specific to the dataset to reduce the search time and the memory required.

Figure 5: The average search time as a function of the dimension of the data using a brute force search, a uniform
grid, and a KD-Tree data structure.

4 Fast algorithms for graph-based compression

In our work, we are also exploring graph-based techniques to compress the data that are being output by the
simulation. Specifically, we are investigating the effectiveness of a class of lossy compression approaches that
replace the actual values associated with sets of grid-nodes with a constant value whose difference from the
actual value is bounded by a user-supplied error tolerance parameter. More details on our work is available
in [5]; we provide a brief summary below.

We model the grid underlying the simulation data via a graph G = (V,E, L). The set of vertices V ,
models the nodes of the grid for which values are computed. The set of edges E, models the connectivity
of adjacent nodes. Two nodes are adjacent if they belong to the same element in the grid. The set of
vertex-labels L, models the values computed at each node of the grid such that li stores the value computed
for node vi. In this initial work, we assume there is only one value being computed for each node of the grid.

An ε-bounded set-based decomposition of G is a partitioning of its set of vertices into non-overlapping sets
{V1, . . . , Vk} such that for each Vi, ∀vq, vr ∈ Vi, |lq − lr| ≤ ε (i.e., each set contains vertices whose values
differ at most by ε). When the induced subgraph Ri = (Vi, Ei) of G is connected, the set Vi will also be
referred to as a region of G. When all sets in an ε-bounded set-based decomposition form regions, then the
decomposition will be referred to as an ε-bounded region-based decomposition of G. Given a set of vertices
Vi, the average value of its vertices will be referred to as its mean value and will be denoted by µ(Vi).

We developed two classes of approaches for obtaining the ε-bounded set-based decomposition of G. The
first class, referred to as the set-based decomposition focuses entirely on the vertices of the grid and their
values, while the second class, the region-based decomposition also takes into account the connectivity of these
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Dataset |V | |E| µ(V ) Grid Type

d1 486051 4335611 0.9958 unstruct.

d2 589824 1744896 0.5430 struct.

d3 1936470 15399496 0.9874 unstruct.

d4 16777216 50102272 163.70 struct.

Table 1: Datasets used in exploring compression techniques.

vertices in the graph. In addition, we developed different approaches for encoding the information that needs
to be stored on the disk in order to maximize the overall compression. In developing these approaches, our
research focused on algorithms whose underlying computational complexity is low because we are interested
in being able to perform the compression in-situ with the execution of the scientific simulation on future
exascale-class parallel systems. As a result of this design choice, the algorithms that we present tend to find
sub-optimal solutions but do so in time that in most cases is bounded by O(|V | log |V | + |E|).

We evaluated our algorithms using seven real world datasets in fluid turbulence and combustion sim-
ulations with both structured and unstructured grids. We present results for the subset of four datasets
described in Table 4. We measured the performance of the different compression approaches using both the
error introduced by the lossy compression and the degree of compression that was achieved. The error was
measured using three different metrics: (i) the root mean squared error (RMSE), defined as:

RMSE =

√√√√ 1
|V |

|V |∑
i=1

|lj − l̂j |2, (1)

where lj is the original value of vertex vj and l̂j is its reconstructed value; (ii) the maximum point-wise error
(MPE), defined as:

MPE = max(|l1 − l̂1|, ..., |ln − l̂n|), (2)

which is the `∞-norm of the point-wise error vector; and (iii) the peak signal-to-noise ratio (PSNR), defined
as:

PSNR = 20 · log10

(
max(x1, ..., xn)

RMSE

)
, (3)

which is a normalized error measure, thus facilitating comparisons of error between datasets with values
that differ greatly in magnitude. The MPE measure is presented in tandem with RMSE to identify those
algorithms which achieve low RMSE, but sustain high point-wise errors.

The compression effectiveness was measured by computing the compression ratio (CR) of each method,
defined as:

CR =
compressed size

uncompressed size
. (4)

To evaluate our methods, we first selected a fixed set of values for RMSE and compared the various
algorithmic choices for the set- and region-based decomposition approaches in terms of their compression
ability. Then, we compared the compression performance of the best combinations of these schemes against
that achieved by other approaches on two levels of lossy compression errors. We considered three other
popular compression schemes: the wavelet method [12, 13] which is often used for visualization in the context
of structured grids; spectral compression [9] that extends the discrete cosine transform used in JPEG from
2D regular grids to the space of any dimensional unstructured grids; and Adaptive Coarsening (AC) [15]
which is based on down-sampling a mesh in areas which can be reconstructed within some error tolerance
and storing at full resolution the others.

Table 4 presents the results for our best methods (indicated by SBD1 and RBD2) against the wavelet
compression (Wvlt), spectral compression (Spctrl), and adaptive coarsening (AC) methods using a high level
of compression error on the four datasets in Table 4.

Additional details on all our experiments, including those on other datasets and at other levels of tolerance
are provided in [5]. We next summarize our results on all the experiments we performed, not just those
presented in this paper. We found that, on average, our algorithms compress the simulation datasets to
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info high error tolerance

Dataset Algorithm RMSE PSNR MPE CR

d1

SBD1 6.30E-03 4.64E+01 1.89E-02 2.39E-02

RBD2 6.28E-03 4.65E+01 1.89E-02 2.52E-02
Spctrl 6.37E-03 4.63E+01 1.11E-01 4.00E-02

d2

SBD1 2.92E-02 3.60E+01 7.33E-02 2.51E-03
RBD2 2.88E-02 3.61E+01 8.02E-02 5.02E-03

Wvlt 3.10E-02 3.55E+01 2.34E-01 2.00E-02

Spctrl 3.17E-02 3.53E+01 7.34E-01 4.50E-02

AC 3.31E-02 3.49E+01 1.50E-01 1.86E-02

d3

SBD1 5.22E-03 4.88E+01 1.91E-02 1.27E-02
RBD2 5.18E-03 4.89E+01 1.93E-02 1.33E-02

Spctrl 5.27E-03 4.87E+01 2.14E-01 4.50E-02

d4

SBD1 2.36E+01 4.70E+01 1.63E+02 2.63E-03
RBD2 2.05E+01 4.83E+01 1.65E+02 6.30E-03

Wvlt 2.47E+01 4.66E+01 6.86E+02 7.50E-03

Spctrl 2.57E+01 4.63E+01 1.78E+03 3.50E-02

AC 2.30E+01 4.73E+01 3.01E+03 2.15E-02

bold indicates the lowest CR for a given dataset and error tolerance

Table 2: Comparison of scientific data compression algorithms for the high error tolerance case.

2–5% of their original size. Compared with just lossless compression only, which results in storage costs of
40–80% of the original size, this is a big improvement. The results also show that for all but two experiments,
SBD1 performs the best and that on average it required only 36% of the storage of the next best algorithm.
For unstructured grids it requires on average 25% of the storage of Spctrl whereas for structured grids it
requires on average 48% and 38% of the space of Wvlt and AC, respectively. Moreover, we see that as the
amount of allowable error is lowered, the performance gap between SBD1 and the other methods grows.
In addition, for unstructured grids, RBD2 performs the second best overall and requiring 61% of the space
required by the Spctrl on average. Over our benchmark suite, our methods obtained compression of 1% of
the original size with average PSNR of 43.00 and 3% of the original size with average PSNR of 63.30. Our
experiments show that our methods achieve compressed representations, which on average, require 50%–75%
less space than competing schemes at similar or lower reconstruction errors. These results suggest that in the
context of grid-based simulation, SBD1 and RBD2 are consistently good choices for compression, providing
low point-wise and global reconstruction error, high compression ratio, and low computational complexity.

5 Summary and future work

In this paper, we described the challenges encountered in the analysis of coherent structures, a common task
in three-dimensional simulations of phenomenon in many scientific domains. As we move towards future
extreme scale systems, we expect that the I/O bandwidth will no longer support the writing out of data for
analysis off-line. Moving the analysis in situ is an option only in some cases, but we still need to adapt to
the relatively smaller memory sizes and the high cost of data movement. To address this, we are exploring
ways in which we can modify an existing algorithm for coherent structure analysis so it can co-exist with
the simulation on an extreme-scale system. We are also considering compression techniques to intelligently
reduce the size of the data output. This would enable us to use the reduced data for analysis and to address
questions that might not have been formulated when the simulation was run, thus supporting scientific
discovery at the exascale.

The next steps in our research will focus on parallel implementations of the work presented in this paper,
with an emphasis on reducing data movement and memory requirements.
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